If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x+20=100
We move all terms to the left:
2x^2+4x+20-(100)=0
We add all the numbers together, and all the variables
2x^2+4x-80=0
a = 2; b = 4; c = -80;
Δ = b2-4ac
Δ = 42-4·2·(-80)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{41}}{2*2}=\frac{-4-4\sqrt{41}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{41}}{2*2}=\frac{-4+4\sqrt{41}}{4} $
| z+147=251 | | 9c02=8c-8 | | x÷96=4 | | 9x7=7x9 | | 6x9=9x6 | | 5/4n=n/8 | | 6/n=4/6 | | 24/4x(8/4)=x | | x=5/0.7x+2.3 | | 50=2t | | 1/5k-6=3/5k+2 | | a=3/a⁴ | | D=p+30 | | n=4/6+5n | | 4a(3a+2)-4a=48 | | P=2d+16 | | 5y-9=3y+4 | | M+2=h | | 1x+2=4x–13 | | x/12-3=19 | | 12x+6=58 | | x5=22 | | (7x-32)+(5x-27)=(145) | | 0.20=x2/35-x | | |n-8|=32 | | 0.08(y-6)+0.06y=0.02y-0.9 | | 4x^2-8x=52 | | 3x^2+243=60x | | (x+7)(x-1)=-4 | | 50x=1.48 | | 5/3-1/3v-3=1/v-1 | | 5x^2-6x^2+86=2x^2-106 |